Regioselective and Stereospecific Azidation of 1,2- and 1,3-Diols by Azidotrimethylsilane via a Mitsunobu Reaction

Linli He, Meni Wanunu, Hoe-Sup Byun, and Robert Bittman*

Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597

Received April 16, 1999

A one-pot regio- and stereospecific azidation reaction of 1,2- and 1,3-diols with azidotrimethylsilane (Me₃SiN₃) via a Mitsunobu reaction has been achieved. With 1,2- and 1,3-diols, the reaction of triphenylphosphine, diisopropyl azodicarboxylate, and Me₃SiN₃ in dichloromethane gave regioselective azidation at C-2 and C-3, respectively, in good yield (74-90% combined yield of 1a + 1b or of 2a + 2b). However, application of the same reaction conditions to a 1,4-diol led to the exclusive formation of the cyclic ether. The regioselectivity of this one-pot reaction is influenced by the solvent, the degree of steric bulk at C-2 of the 1,2-diol or at C-3 of the 1,3-diol, and the presence of electrondonating and electron-withdrawing groups near the secondary carbinol carbon. This selectivity is discussed in terms of the mechanistic model proposed by Mathieu-Pelta and Evans (Mathieu-Pelta, I.; Evans, S. A., Jr. J. Org. Chem. 1992, 57, 3409-3413), which involves reaction of the dioxaphospholane intermediate with Me₃SiN₃ to form oxyphosphonium ions 4 and 5.

Introduction

A 2-amino-1-ol and 3-amino-1-ol substructure is a common component of many natural products. Chiral 1,2and 1,3-amino alcohols are also versatile building blocks for the synthesis of a wide range of biologically important compounds and are precursors of ligands for asymmetric reaction catalysis.¹ Many synthetic methods are available for the direct installation of the amino alcohol functionalities into a substrate. Well-known methods for the preparation of amino alcohols are opening of epoxides² or cyclic sulfates³ by amines, reduction of α - and β -amino acids,⁴ and asymmetric aminohydroxylation of olefins.⁵

Azidohydrins are attractive precursors of amino alcohols because many efficient methods are known for the conversion of an azide to an amine (e.g., Ph₃P/THF-H₂O,⁶ LiAlH₄, catalytic hydrogenation,⁷ H₂S/pyridine,⁸

(2) (a) Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S. M.; Walker, F. J.; Woodward, S. S. Pure Appl. Chem. 1983, 55, 589-604. (b) Behrens, C. H.; Sharpless, K. B. Aldrichim. Acta 1983, 16, 67-79. (c) Askin, D.; Eng, K. K.; Rossen, K.; Purick, R. M.; Wells, K. M.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. **1994**, *35*, 673–676. (d) Hanson, R. M. Chem. Rev. **1991**, *91*, 437–475. (e) Klunder, J. M.; Ko, S. Y.; Sharpless, K. B. J. Org. Chem. 1986, 51, 3710-3712.

SnCl₂,⁹ SmI₂,¹⁰ Bu₃SnH/AIBN¹¹). This approach is particularly important since several powerful enantioselective methods can be used to prepare epoxides¹² and vicinal diols,^{1d} which are facile precursors of azidohydrins. Moreover, azides can be converted in situ to carbamates,¹³ amides,¹⁴ and other derivatives.

Ring opening of epoxides by azide ion (NaN₃, LiN₃, or Me₃SiN₃) in the presence of a promoter (e.g., LiClO₄, ^{15a} Al(i-PrO $)_{3}$,^{15b} Ti $(OPr-i)_{4}$,^{15c,d} BF₃·Et₂O,^{15e} MgSO₄,^{2a} and NH₄Cl^{2a}) gives vicinal azidohydrins. However, in these reactions azide ion generally attacks the C-1 position of terminal epoxides and the C-3 position of 2,3-epoxy alcohols. Ring opening of cyclic sulfates by azide ion gives a similar regioselectivity.³ These methods are thus not suitable when C-2 substitution is desired. The synthesis of C-2 monoazido alcohols from diols is usually achieved by a multistep reaction sequence involving selective protection, activation, azide substitution, and deprotection. In 1992, an efficient regioselective and stereospecific method was described for converting a 1,2-propanediol into a 2-azido-1-silyloxypropane.^{16a} This reaction utilized formation of a 1,3,2-dioxaphospholane by reaction of 1,2propanediol and (EtO)₂PPh₃ (generated by reaction of

(12) Katsuki, T.; Martin, V. Org. React. 1996, 48, 1-300.

(13) Saito, S.; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron Lett. 1989, 30, 837-838.

^{*} To whom correspondence should be addressed. Tel.: (718) 997-3279. Fax: (718) 997-3349. E-mail: robert_bittman@qc.edu.

 ^{(1) (}a) Shioiri, Y.; Hamada, Y. *Heterocycles* 1988, 27, 1035–1050.
 (b) Barlow, C. B.; Bukhari, S. T.; Guthrie, R. D.; Prior, A. M. In Asymmetry in Carbohydrates; Dekker: New York, 1979; pp 81-99. (c) Blaser, H.-U. *Chem. Rev.* **1992**, *92*, 935–952. (d) Kolb, H. C.; Van-Nieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483–2547.

⁽³⁾ For a review, see: Lohray, B. B.; Bhushan, V. Adv. Heterocycl. Chem. 1997, 68, 89-180.

^{(4) (}a) Gage, J. R.; Evans, D. A. Org. Synth. **1988**, 67, 77–82. (b) Smith, G. A.; Gawley, R. E. Org. Synth. **1984**, 63, 136–139. (c) Poindexter, G. S.; Meyers, A. I. Tetrahedron Lett. **1977**, 40, 3527–3528. (d) Kokotos, G.; Noula, C. J. Org. Chem. **1996**, 61, 6994–6996. (e) Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids; Wiley: New York, 1987.

⁽⁵⁾ For asymmetric aminohydroxylation of olefins, see: Bruncko, M.; Schlingloff, G.; Sharpless, K. B. *Angew. Chem., Int. Ed. Engl.* **1997**, 36, 1483-1486 and references therein.

⁽⁶⁾ For a review about the Staudinger reaction, see: Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. *Tetrahedron* 1981, *37*, 437–472.
 (7) Scriven, E. F. V.; Turnbull, K. *Chem. Rev.* 1988, *88*, 297–368.

^{(8) (}a) Adachi, T.; Yamada, Y.; Inoue, I. Synthesis 1977, 45-46. (b) Becher, J.; Pluta, K.; Krake, N.; Brondum, K.; Christensen, N. J.;

Vinader, M. V. *Synthesis* **1989**, 530–533. (9) Maiti, S. N.; Singh, M. P.; Micetich, I. G. *Tetrahedron Lett.* **1986**, 27, 1423-1424.

^{(10) (}a) Huang, Y.; Zhang, Y.; Wang, Y. *Tetrahedron Lett.* **1997**, *38*, 1065–1066. (b) Goulaouic-Dubois, C.; Hesse, M. *Tetrahedron Lett.* **1995**, *36*, 7427–7430. (c) Benati, L.; Montevecchi, P. C.; Nanni, D.; Spagnolo, P.; Volta, M. *Tetrahedron Lett.* **1995**, *36*, 7313–7314. (11) (a) Samano, M. C.; Robins, M. J. *Tetrahedron Lett.* **1991**, *32*,

^{6293-6296. (}b) Pupeiko, N. E.; Prikota, T. I.; Mikhailopulo, I. A. Synlett 1991, 342-342.

 ⁽¹⁴⁾ Byun, H.-S.; Bittman, R. J. Org. Chem. 1996, 61, 8706–8708.
 (15) (a) Chini, M.; Crotti, P.; Flippin, L. A.; Macchia, F. J. Org. Chem.
 1990, 55, 4265–4272. (b) Emziane, M.; Lhoste, P.; Sinou, D. Synthesis 50, 1560–1563. (e) Behrens, C. H.; Sharpless, K. B. J. Org. Chem. 1985, 50, 5696-5704.

Table 1. Regioselective Azidation of 1,2-Diols via a **Mitsunobu Reaction**

R	0H 	- _R - ОН + 1a	QH R N3 1b
Entry	R	Product Ratio ^a (1a/1b)	Combined Yield ^b of 1a and 1b (%)
1	ρ-CIC ₆ H₄OCH₂-	2.2:1	85
2	p-MeOC ₆ H₄OCH₂−	2:1	83
3	C ₆ H ₅ CH ₂ OCH ₂ -	6.3:1	78
4	C ₆ H ₅ CH ₂ SCH ₂ -	4.3:1	65 ^c
5	n-C ₁₈ H ₃₇ OCH ₂ -	8.7:1	86
6	n-C ₁₄ H ₂₉ -	20:1	83
7	<i>n</i> -C ₆ H ₁₃ -	>50:1	74
8	<i>n</i> -C ₁₃ H ₂₇ = CH ₂ -	7:1	78
9	OCH2C6H4C	1:22 ЭМе-р	92 ⁴

^a The ratio was calculated from the isolated yields of **1a** and **1b**. ^b Isolated yield. ^c During the reaction, rearrangement takes place via an episulfenium ion intermediate to give (S)-3-azido-2benzylthio-1-propanol.²⁶ d The reaction with Me₃SiN₃ was carried out at 70 °C.

Ph₃P with diethyl peroxide) to activate the alcohol and Me₃SiX (X = PhS, I, Br, Cl, CN, and N_3) as nucleophiles, mainly for the purpose of mechanistic study. In the course of our efforts to convert a hindered secondary hydroxy group to an azide under mild conditions, we found that addition of Me₃SiN₃ to a mixture of diisopropyl azodicarboxylate (DIAD), triphenylphosphine, and a 1,3-diol also provided the secondary azide in good yield and with excellent stereocontrol. The use of DIAD rather than the hazardous EtOOEt as the phosphine activator represents a significant advantage. In view of the potential importance of azidation of diols, a detailed study has been carried out, and herein we report some synthetic applications of this reaction.

Results

Azidation of 1,2-Diols (Derivatives of Propane-1,2-diol and Glycerol). Chiral 1,2-diols were prepared either by catalytic asymmetric dihydroxylation (entries 1, 2, and 6-8 of Table 1)¹⁷ or by nucleophilic opening of chiral glycidol (entries 3-5).¹⁸ The one-pot conversion of a 1,2-diol to its azido alcohol was performed by adding DIAD to a mixture of diol and Ph₃P in THF at 0 °C. After 3 h, Me₃SiN₃ was injected, and the reaction mixture was

Table 9 Calcout Effects on the Device ale stimiter of

OH R → OH	1. Ph ₃ P, DIAD, 0 °C 2. Me ₃ SiN ₃ , 0 °C 3. TBAF		R 1a	0H R ∼ N ₃
R		Solvent	Product Ratio (1a/1b)	Combined Yield of 1a and 1b (%)
p-MeOC ₆ H₄OC	CH2-	THF	2:1	82
		CH ₂ Cl ₂	3:1	81
		PhCH ₃	4:1	84
<i>n</i> -C ₁₄ H ₂₉ -		THF	20:1	82
		CH ₂ Cl ₂	32:1	80
		PhCH ₃	47:1	89
n-C ₁₃ H ₂₇ ──	CH₂-	THF	7:1	77
		CH ₂ Cl ₂	10:1	80
		PhCH ₃	12:1	74

^a Typical reaction times required for the overall conversion of a diol to 1a and 1b: 7 h in THF and CH₂Cl₂, 12 h in PhCH₃.

stirred at this temperature until azide substitution was completed. After desilylation (n-Bu₄NF in THF), the products were purified by column chromatography.

The regioselectivity of the monoazidation of 1,2-diols is summarized in Table 1. With one exception, the diols shown in Table 1 gave 2-azido-1-ol 1a as the major product. (Since the diol shown in entry 9 did not undergo azide substitution even at room temperature, the reaction mixture was heated to 70 °C; the primary azide 1b of the protected mannose was obtained almost exclusively.) The highest C-2 regioselectivity was observed when R was *n*-hexyl (Table 1, entry 7). The possible reasons for the lower regioselectivity found with glycerol derivatives (Table 1, entries 1-5) and for the lower yield obtained from benzylthioglycerol (Table 1, entry 4) are discussed below.

Solvent Effect on the Azidation of 1,2-Diols. The influence of solvent on the reaction was studied. The three substrates shown in Table 2 were randomly selected, and three solvents commonly used in the Mitsunobu reaction¹⁹ were tested. It is clear that the regioselectivity but not the yield of the reaction depends on the solvent, with the highest degree of regioselectivity taking place in toluene and the lowest in THF.

Azidation of 1,3- and 1,4-Diols. Similarly, the onepot azidation reactions of 1,3- and 1,4-diols were carried out.²⁰ It is obvious that under the same conditions regioselective azide substitution also occurred at the more hindered C-3 position of the 1,3-diols shown in Table 3. However, with a 1,4-diol ($R = n-C_{14}H_{29}$) a tetrahydrofuran derivative was formed exclusively, presumably via an

^{(16) (}a) Mathieu-Pelta, I.; Evans, S. A., Jr. J. Org. Chem. 1992, 57, 3409-3413. (b) Pautard, A. M.; Evans, S. A., Jr. J. Org. Chem. 1988, 53, 2300-2303.

⁽¹⁷⁾ Byun, H.-S.; Erukulla, R. K.; Bittman, R. J. Org. Chem. 1994, 59, 2630-2633.

^{(18) (}a) Erukulla, R. K.; Byun, H.-S.; Locke, D. C.; Bittman, R. J. *Chem. Soc., Perkin Trans. 1* **1995**, 2199–2200. (b) Byun, H.-S.; Bittman, R. *J. Org. Chem.* **1994**, *59*, 688–671.

⁽¹⁹⁾ Hughes, D. V. Org. React. 1992, 42, 335-656.

⁽²⁰⁾ Chiral 1,3-diols were synthesized via the following sequence of reactions: (1) catalytic asymmetric dihydroxylation of α . β -unsaturated esters, (2) formation of cyclic sulfates, (3) opening of the cyclic sulfate with LiBr, (4) debromination of the α -bromide ester with Bu₃SnH/ AIBN, and (5) ester reduction by DIBAL-H.

Table 3. Regioselective Azidation of 1,3-Diols via aMitsunobu Reaction^a

OH R	1. Ph ₃ P, I 0H	DIAD, 0°C N ₃ , 0 °C		
	3. TBAF		2a	2b
Entry	R	Solvent	Product Ratio ^b (2a/2b)	Combined Yield ^c of 2a and 2b (%)
1	<i>n</i> -C ₁₆ H ₃₃ OCH ₂ -	THF	7.4:1	78
2	<i>n-</i> C ₁₃ H ₂₇ -	CH ₂ Cl ₂	18.7:1	90
3	<i>n</i> -C ₁₅ H ₃₁ -	THF	14.5:1	85

^{*a*} The starting diols were prepared as outlined in ref 20. ^{*b*} The ratio was calculated from the isolated yields of **2a** and **2b**. ^{*c*} Isolated yield.

 Table 4.
 Stereospecificity of Azidation

^{*a*} The enantiomeric excess of the starting diols was determined by analysis of the ¹H NMR spectra of the bis-MTPA esters. ^{*b*} The enantiomeric excess of the secondary azides was determined by analysis of the ¹³C NMR spectra of the azido-MTPA ester (Figure 1).

intramolecular Mitsunobu reaction due to the facile formation of a five-membered ring.

Stereospecificity of Azidation. One representative example of a 1,2- and 1,3-diol was selected to evaluate the stereospecificity of the azidation. The enantiomeric excess of the starting diols was determined by analysis of the ¹H NMR spectra of the bis-MTPA esters, while for that of the azidohydrins, ¹³C NMR analysis of the corresponding azido-MTPA ester was employed since baseline separations were not obtained in their ¹H NMR spectra. The excellent stereospecificity of the reaction is demonstrated in Table 4 and Figure 1. In each reaction, the chiral purity of the product was as high as that of the starting diol.

Discussion

Mechanism. Although the reaction conditions in the current study are different from those reported previously,^{16a} our results support and extend the mechanism proposed by Mathieu-Pelta and Evans.^{16a} Scheme 1 illustrates the following steps: (1) The reaction of an alkyl (*S*)-1,2-propanediol with triphenylphosphine and DIAD furnishes two conformational isomers, **3a** and **3b**, which undergo a rapid interconversion through a pseu-

Figure 1. Partial ¹³C NMR spectra of (*R*)-(–)-MTPA esters of 2-azido-1-hexadecanol (A–C) and 3-azido-1-octadecanol (D–F). Mosher esters derived from: (A) a 1.00:1.13 mixture of (*2R*)-2-azido-1-hexadecanol and (*2S*)-2-azido-1-hexadecanol; (B) (*2R*)-2-azido-1-hexadecanol; (C) (*2S*)-2-azido-1-hexadecanol; (D) a 1.19:1.00 mixture of (*2R*)-3-azido-1-octadecanol and (*2S*)-3-azido-1-octadecanol; (E) (*2R*)-3-azido-1-octadecanol; and (F) (*2S*)-3-azido-1-octadecanol.

dorotation. (2) Silylation at the more basic P–O apical oxygen²¹ leads to the formation of (silyloxy)phosphonium ions **4** and **5**, which was confirmed by ³¹P NMR spectroscopy (δ 62.0 and 63.5 ppm, respectively^{16b}). (3) The transition state leading to **3b**' experiences severe steric hindrance since the trimethylsilyl group is sandwiched between the C-4 alkyl group and the equatorial P=C₆H₅ groups in the trigonal-bipyramidal array. Thus, formation of C-2 siloxyphosphonium ion **4** is favored. (4) Subsequent S_N2 displacement of Ph₃PO by azide ion affords the C-2–N₃ regioisomer **1a** as the major product.

⁽²¹⁾ Luckenbach, R. *Dynamic Stereochemistry of Pentacoordinated Phosphorus and Related Elements*; George Thieme: Stuttgart, FRG, 1973.

Me₃**SiN**₃ **as a Source of Azide Ion.** It is well known that cyclic sulfates are very reactive toward nucleophilic ring opening.²² However, attempted reaction between Me₃SiN₃ and the cyclic sulfate of (*S*)-1-(4'-methoxyphe-nyl)glycerol revealed that little N₃⁻ was available from Me₃SiN₃ in THF and CH₂Cl₂, since no ring opening occurred at all, even after 48 h of reflux in THF (94% of the starting cyclic sulfate was recovered). This result suggests that dioxaphosphorane **3a** or **3b** first reacts with Me₃SiN₃ to form the ion pair **3a**' or **3b**', which then generates (silyloxy)phosphonium ion **4** or **5** and azide ion.

Regioselectivity of Azidation. (a) Steric Effect. We propose that the regiochemistry of the reaction is controlled not only by steric congestion presented in the apical oxygen atom of dioxaphosphoranes **3a** and **3b** but also by the rate of the azide displacement reaction with **4** or **5**. As demonstrated in Tables 1 and 3, all of the azidation reactions (except that in entry 9, Table 1) showed a consistent attack of N_3^- at the more hindered secondary carbinol position. This result suggests that nucleophilic substitution by N_3^- is not the rate-determining step of the overall reaction. If so, **1b** instead of **1a** would be the major product (Curtin–Hammett principle).²³

Steric hindrance in the R group causes the less hindered apical oxygen²¹ of dioxaphosphorane **3a** to attack Me₃SiN₃ to give **3a**'; a similar attack after pseudorotation would yield the hindered ion pair **3b**'. After ring opening, oxyphosphonium ion 4 is favored over 5. Therefore, $C-2-N_3/C-3-N_3$ becomes the major product (except in entry 9, Table 1). Although a bigger R group is expected to give a higher ratio of 4/5, it would also slow the subsequent $S_N 2$ reaction of **4** to a greater extent than it would for that of 5. Hence, when the R group of the 1,2-diol is changed from CH_3^{16a} to $n-C_6H_{13}$ and to $n-C_{14}H_{29}$, the regioselectivity (1a/1b ratio) decreases from >99:1^{16a} to > 50:1 and to 20:1, since **4** can interconvert to **5** prior to undergoing direct reaction with N_3^- . When the R group in a diol is very bulky, the approach of N_3^- at the secondary carbinol carbon of 4 can be totally blocked. In this case, nucleophilic displacement can only take place at the primary position, and the C-1-N₃ derivative would become the major product. Entry 9 in Table 1 reflects such a situation, where R is bulky and molecular modeling indicates that one of the methyl groups in the isopropylidene moiety is positioned at the back of the leaving Ph₃PO.

(b) Electronic Effect. The data presented in Tables 1 and 3 suggest that, in addition to the steric effect discussed above, a significant electronic effect is also observed in the azidation of 1,2- and 1,3-diols. Since the carbon atom bearing the leaving group is more electron-deficient in the S_N2 transition state than in the ground state,²⁴ most S_N2 reactions are retarded by the presence of electron-withdrawing substituents at the β -carbon atom.²⁵ For example, the relative S_N2 rate of XCH₂CH₂Br

(25) (a) Hine, J.; Brader, W. H., Jr. J. Am. Chem. Soc. 1953, 75, 3964–3966. (b) Bordwell, F. G.; Brannen, W. T., Jr. J. Am. Chem. Soc. 1964, 86, 4645–4650. (c) Winstein, S.; Allred, E.; Heck, R.; Glick, R. Tetrahedron 1958, 3, 1–13.

Table 5.	Azidation vs Silylation of Primary, Secondary,			
and Te	rtiary Alcohols with Me ₃ SiN ₃ via a Mitsunobu			
Reaction				

ROH	1. Ph ₃ P, DIAD, THF, 0 °C			
	2. Me ₃ SiN ₃ , THF, 0 °C	Ŧ	RUSIMe3	
Entry	Alcohol	Yield of Product (%)		
			ROSiMe ₃	
1	<i>п</i> -С ₁₆ Н ₃₃ ОН	46	51	
2	OH Ph 20 C ₁₂ H ₂₅	28	25	
3	<i>n</i> -C ₁₃ H ₂₇ C(OH)(CH ₃) ₂	trace	85	

with PhSNa decreases from 1.0 to 0.18 and to 0.16 when X is changed from CH₃ to Cl and to F.^{25a} This result may explain why the regioselectivities in entries 1–5 (Table 1) and entry 1 (Table 3) are lower than those in entries 6 and 7 (Table 1) and entries 2 and 3 (Table 3), respectively. The largest effect was observed in entries 1 and 2 (Table 1), where phenyloxy groups are stronger electron-withdrawing groups than benzyloxy and alkoxy groups (entries 3 and 5 of Table 1, respectively). Such β -carbon electronic effects are also known to take place in nucleophilic opening reactions of epoxides.²

Finally, part of the oxyphosphonium ion **4** derived from benzylthioglycerol undergoes intramolecular displacement to form a sulfenium ion, which after ring opening by N_3^- leads to a 2-benzylthio-3-azide derivative (14%).²⁶ Therefore, the yield of **1a** is lower (entry 4, Table 1).

Solvent Effect. Although the solvent also plays a role in determining the regioselectivity of the reaction, and a nonpolar solvent seems to favor formation of the C-2-N₃ product (Table 2), it is worthwhile to point out that CH_2Cl_2 is the solvent of choice among the three studied here. All of the diols studied have poor solubility in toluene at 0 °C; therefore, prolonged reaction time is required, and sometimes reaction is incomplete.

Application of the Azidation to Simple Alcohols. Azidation of simple alcohols by the Mitsunobu reaction is well known using diphenylphosphoryl azide, hydrazoic acid, and zinc azide/pyridine complex.¹⁹ Table 5 shows the results of azidation of simple alcohols with Ph₃P, DIAD, and Me₃SiN₃. Since Me₃SiN₃ needs to be activated prior to the azide substitution reaction, it was predictable that the maximum yield of the azido derivative that could be realized would be 50% (to get one N_3^- from Me₃SiN₃, one alcohol will be consumed to form Me₃SiOR). Azidation of cetyl alcohol proceeded in 46% yield, whereas a secondary alcohol bearing a 1,3-benzylidene group gave a poor yield. The failure of the azidation reaction with a tertiary alcohol (Table 5) may reflect the inability of this substrate to react with Ph₃P to form an oxyphosphonium ion.

Conclusion

The one-pot regio- and stereospecific azidation of 1,2and 1,3-diols with Ph₃P, DIAD, and Me₃SiN₃ under

⁽²²⁾ Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538–7539.

⁽²³⁾ For a discussion of the Curtin–Hammett principle, see: (a) Carey, F. A.; Sundberg, R. J. In *Advanced Organic Chemistry*; Plenum Press: New York, 1990; pp 215–216. (b) Seeman, J. I. *Chem. Rev.* **1983**, *83*, 83–134.

⁽²⁴⁾ Streitwieser, A., Jr. Chem. Rev. 1956, 56, 571-752.

Mitsunobu conditions has been achieved in good yield. This mild method avoids a multistep protection and deprotection procedure and is compatible with a broad range of functional groups that may be present in the diol. The regioselectivity of the reaction appears to be sensitive to the size of the alkyl substituent, the electronic distribution of the substrate, and the polarity of the solvent. This reaction combination is not suitable for the conversion of a simple alcohol to its azido derivative because Me₃SiN₃ is a poor nucleophile.

Experimental Section

General Information. See refs 14 and 17 for general experimental protocols. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz on a Bruker spectrometer, respectively, and were referenced to the residual CHCl₃ at 7.24 (¹H) and 77.00 ppm (¹³C). Deuterated chloroform (CDCl₃) was used as the only solvent for all of the NMR analysis. (*R*)-(–)- α -Methoxy- α -trifluoromethylphenylacetic acid chloride, DIAD, TBAF, and Me₃SiN₃ were purchased from Fluka, Lancaster, Aldrich, and Acros, respectively, and were used as provided commercially without further purification. Elemental analyses were carried out by Schwarzkopf Microanalytical Laboratory (Woodside, NY). Melting points are uncorrected.

General Procedure for the Azidation of 1,2- and 1,3-Diols. Method A (One-Pot Mode). To a solution of a diol (1.0 mmol) and Ph₃P (342 mg, 1.3 mmol) (both thoroughly dried overnight under vacuum of 0.7 Torr) in 18 mL of dry solvent (THF, CH₂Cl₂, or PhCH₃) was injected 311 μ L (1.5 mmol) of DIAD²⁷ at 0 °C. After the yellow reaction mixture was stirred at this temperature for 3 h under nitrogen, 211 μ L (1.3 mmol) of Me₃SiN₃ was injected. CAUTION: Me₃SiN₃ is sensitive to H₂O, releasing toxic hydrazoic acid on hydrolysis. Therefore, Me₃SiN₃ should be used only in a well-ventilated hood, and skin contact should be avoided. The reaction mixture (either a clear solution or sometimes a suspension) was stirred at the same temperature for 3 h and then allowed to warm to room temperature. After removal of the solvent, the residue was dissolved in 3 mL of THF and treated with 2.5 mL of a 1 M TBAF solution in THF containing 5 wt % of H₂O.²⁸ The brown reaction mixture was stirred at room temperature until all of the silvloxy azides 1a-OTMS and 1b-OTMS were consumed completely (TLC). Concentration gave a slurry, which was dissolved in CH₂Cl₂ and passed through a pad of silica gel in a sintered glass funnel to remove Ph₃PO and salts. The pad was washed with a mixture of hexanes-EtOAc (usually 6/1) depending on the polarity of the products. The crude products were purified by silica gel chromatography (elution first with 150 mL of hexanes-EtOAc 50/1 and then with the appropriate mixture of hexanes-EtOAc).

Method B (Two-Pot Mode). The only modification here is that after the completion of the reaction among a diol, Ph_3P , DIAD, and Me_3SiN_3 and concentration the yellow residue was dissolved in a minimum volume of CH_2Cl_2 and passed through a pad of silica gel in a sintered glass funnel instead of the direct addition of TBAF. The pad was rinsed with hexanes-EtOAc (100/1 or 50/1) to collect the silyloxy azides. The excess yellow DIAD served as an indicator, since silyloxy azides are less polar than DIAD (except for the sugar derivative), and therefore, they were eluted before DIAD. After concentration, the residue was dissolved in 3 mL of dry THF and treated with 2.5 mL of TBAF. After the same workup procedure as in the

one-pot mode, the crude products were dissolved in a minimum volume of hexane and transferred to a silica gel column for chromatographic separation (elution first with 150 mL of hexanes-EtOAc 50/1, then with the appropriate mixture of hexanes-EtOAc).

(S)-2-Azido-3-O-(4'-chlorophenyl)-1,3-propanediol: mp 36.5–37.5 °C; [α]²⁵_D –22.1° (*c* 1.5, CHCl₃); IR (CHCl₃) 3611, 3442, 2125, 2110, 1511, 1235, 1040, 839 cm⁻¹; ¹H NMR δ 1.96 (br s, 1H), 3.75 (dd, 1H, *J* = 11.4, 5.9 Hz), 3.88 (m, 2H), 4.07 (dd, 1H, *J* = 9.7, 6.7 Hz), 4.12 (dd, 1H, *J* = 9.8, 4.7 Hz), 6.83 (d, 2H, *J* = 8.9 Hz), 7.23 (d, 2H, *J* = 8.9 Hz); ¹³C NMR δ 61.99, 62.17, 68.07, 115.79, 126.40, 129.43, 156.68. Anal. Calcd for C₉H₁₀O₂N₃Cl: C, 47.48; H, 4.43; N, 18.64; Cl, 15.57. Found: C, 47.56; H, 4.21; N, 18.56; Cl, 15.27.

(*R*)-3-Azido-1-*O*-(4'-chlorophenyl)-1,2-propanediol: $[\alpha]^{25}_{\rm D}$ +13.3° (*c* 1.4, CHCl₃); IR (CHCl₃) 3605, 3446, 2111, 1507, 1041, 830 cm⁻¹; ¹H NMR δ 2.24 (br s, 1H), 3.47 (dd, 1H, *J* = 12.7, 6.1 Hz), 3.52 (dd, 1H, *J* = 12.6, 4.6 Hz), 3.96 (d, 2H, *J* = 5.2 Hz), 4.14 (m, 1H), 6.80 (d, 2H, *J* = 8.9 Hz), 7.25 (d, 2H, *J* = 8.9 Hz); ¹³C NMR δ 53.30, 69.19, 69.32, 115.79, 126.38, 129.45, 156.78.

(S)-2-Azido-3-O-(4'-methoxyphenyl)-1,3-propanediol: mp 52.5–53.0 °C; $[\alpha]^{25}_{\rm D}$ –29.0° (*c* 1.2, CHCl₃); IR (CHCl₃) 3601, 3432, 2126, 2110, 1511, 1235, 1040, 825 cm⁻¹; ¹H NMR δ 1.92 (br s, 1H), 3.74 (dd, 1H, *J* = 11.1, 5.8 Hz), 3.75 (s, 3H), 3.85 (m, 2H), 4.05 (dd, 1H, *J* = 9.8, 6.4 Hz), 4.09 (dd, 1H, *J* = 9.8, 4.7 Hz), 6.83 (m, 4H); ¹³C NMR δ 55.70, 62.12, 62.37, 68.58, 114.70, 115.60, 152.24, 154.33. Anal. Calcd for C₁₀H₁₃O₃N₃: C, 53.81; H, 5.87; N, 18.82. Found: C, 53.87; H, 5.72; N, 19.01.

(*R*)-3-Azido-1-*O*-(4'-methoxyphenyl)-1,2-propanediol: $[\alpha]^{25}_{D}$ +16.4° (*c* 4.3, CHCl₃); IR (CHCl₃) 3585, 3401, 2110, 1491, 1245, 1040, 820 cm⁻¹; ¹H NMR δ 2.40 (br s, 1H), 3.46 (dd, 1H, *J* = 12.7, 6.1 Hz), 3.52 (dd, 1H, *J* = 12.7, 4.7 Hz), 3.75 (s, 3H), 3.95 (m, 2H), 4.12 (m, 1H), 6.82 (s, 4H); ¹³C NMR δ 53.36, 55.70, 69.38, 69.79, 114.71, 115.57, 152.32, 154.32.

(S)-2-Azido-3-*O*-benzyl-1,3-propanediol: $[\alpha]^{25}_{D}$ -29.9° (*c* 1.5, CHCl₃); IR (CHCl₃) 3460, 2120, 2097, 1261, 1096 cm⁻¹; ¹H NMR δ 2.31 (s, 1H), 3.60–3.73 (m, 5H), 4.55 (s, 2H), 7.29–7.36 (m, 5H); ¹³C NMR δ 62.37, 62.61, 69.96, 73.47, 127.61, 127.84, 128.43, 137.37. Anal. Calcd for C₁₀H₁₃O₂N₃: C, 57.96; H, 6.32; N, 20.28. Found: C, 58.21; H, 6.24; N, 20.57.

(*R*)-3-Azido-1-*O*-benzyl-1,2-propanediol: $[\alpha]^{25}_{D}$ +11.5° (*c* 1.1, CHCl₃); IR (CHCl₃) 3565, 3472, 2097, 1272, 1102 cm⁻¹; ¹H NMR δ 2.47 (br s, 1H), 3.30 (dd, 1H, *J* = 8.6, 6.1 Hz), 3.40 (dd, 1H, *J* = 8.6, 4.7 Hz), 3.47 (dd, 1H, *J* = 9.6, 6.1 Hz), 3.51 (dd, 1H, *J* = 9.6, 4.4 Hz), 3.94 (m, 1H), 4.54 (s, 2H), 7.27–7.37 (m, 5H); ¹³C NMR δ 54.85, 71.09, 72.69, 74.96, 129.25, 129.39, 129.94, 138.93.

(*S*)-1-Azido-3-benzylthio-2-propanol: $[\alpha]^{25}_{D}$ +42.9° (*c* 1.9, CHCl₃); IR (CHCl₃) 3580, 3498, 2105, 1496, 1450, 702, 666 cm⁻¹; ¹H NMR δ 2.47 (m, 2H), 2.56 (s, 1H), 3.25 (dd, 1H, *J* = 12.6, 6.23 Hz), 3.32 (dd, 1H, *J* = 12.6, 4.0 Hz), 3.65-3.77 (m, 3H), 7.21-7.32 (m, 5H); ¹³C NMR δ 35.50, 36.27, 55.10, 68.81, 127.25, 128.58, 128.78, 137.61.

(*R*)-2-Azido-3-benzylthio-1-propanol: $[\alpha]^{25}{}_{\rm D}$ -5.0° (*c* 1.42, CHCl₃); IR (CHCl₃) 3500, 2110, 702, 666 cm⁻¹; ¹H NMR δ 1.71 (t, 1H, *J* = 5.9 Hz), 2.55 (dd, 1H, *J* = 13.8, 6.6 Hz), 2.60 (dd, 1H, *J* = 13.8, 6.7 Hz), 3.48 (m, 1H), 3.59 (m, 1H), 3.71 (m, 1H), 3.76 (s, 2H), 7.23-7.34 (m, 5H); ¹³C NMR δ 31.79, 36.90, 63.35, 63.97, 127.36, 128.68, 128.94, 137.68. Anal. Calcd for C₁₀H₁₃ON₃S: C, 53.79; H, 5.87; N, 18.82. Found: C, 53.59; H, 5.65; N, 18.71.

(*S*)-3-Azido-2-benzylthio-1-propanol: $[\alpha]^{25}_{D}$ +16.6° (*c* 0.8, CHCl₃); IR (CHCl₃) 3478, 2105, 1496, 1455, 702, 666 cm⁻¹; ¹H NMR δ 1.87 (br s, 1H), 2.81 (m, 1H), 3.37 (dd, 1H, *J* = 12.6, 7.2 Hz), 3.42 (dd, 1H, *J* = 12.6, 6.4 Hz), 3.61 (dd, 1H, *J* = 11.5, 5.6 Hz), 3.67 (dd, 1H, *J* = 11.5, 5.4 Hz), 3.79 (s, 2H), 7.24–7.34 (m, 5H); ¹³C NMR δ 35.87, 47.37, 52.57, 62.27, 127.46, 128.75, 128.80, 137.67.

(S)-2-Azido-3-*O*-octadecyl-1,3-propanediol: mp 46.8– 47.4 °C; $[\alpha]^{25}_{\rm D}$ +11.6° (*c* 1.78, CHCl₃); IR (CHCl₃) 3592, 2100, 1080 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.23 (m, 30H), 1.54 (m, 2H), 1.91 (br s, 1H), 3.45 (dt, 2H, J = 6.6, 1.5 Hz), 3.58–3.75 (m, 5H); ¹³C NMR δ 14.10, 22.68, 25.97, 29.35, 29.41, 29.56, 29.59, 29.65, 29.68, 31.91, 62.18, 63.09, 71.01, 71.91.

⁽²⁷⁾ It is important to use an excess of DIAD (about 1.15 equiv) relative to Ph_3P ; otherwise, an excess amount of Ph_3P can destroy the azide group in the products by the Staudinger reaction.

⁽²⁸⁾ The reaction was generally carried out in a one-pot mode. However, it is often helpful to pass the reaction mixture (before the addition of KF or TBAF) through a pad of silica gel to remove the more polar byproducts such as Ph₃PO, dihydro-DIAD, and unreacted diol. If this procedure is employed, it is also important to realize that the trimethylsilyloxy group is not stable, and therefore, the reaction mixture should not be allowed to remain in contact with silica gel for a prolonged time.

Anal. Calcd for $C_{21}H_{43}O_2N_3$: C, 68.25; H, 11.73; N, 11.37. Found: C, 68.13; H, 11.55; N, 11.44.

(*R*)-3-Azido-1-*O*-octadecyl-1,2-propanediol: mp 38.9– 40.0 °C; $[\alpha]^{25}_{\rm D}$ –5.2° (*c* 2.1, CHCl₃); IR (CHCl₃) 3580, 3440, 2105, 1045 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.23 (m, 30H), 1.53 (m, 3H), 3.30–3.48 (m, 6H), 3.91 (m, 1H); ¹³C NMR δ 14.10, 22.67, 26.06, 29.35, 29.44, 29.53, 29.57, 29.60, 29.65, 29.68, 31.91, 53.46, 69.64, 71.69, 71.76.

(*S*)-2-Azido-1-hexadecanol: mp 45.0–45.5 °C; $[\alpha]^{25}_{\rm D}$ +9.9° (*c* 1.2, CHCl₃); IR (CHCl₃) 3626, 3595, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.24–1.46 (m, 24H), 1.50 (dt, 2H, J = 14.0, 6.9 Hz), 1.71 (br s, 1H), 3.44 (m, 1H), 3.52 (dd, 1H, J = 11.2, 7.5 Hz), 3.67 (dd, 1H, J = 11.4, 3.5 Hz); ¹³C NMR δ 14.10, 22.67, 26.00, 29.34, 29.41, 29.42, 29.51, 29.60, 29.64, 29.66, 30.56, 31.91, 64.49, 65.24; HRMS (FAB, MH⁺) calcd for *m*/*z* C₁₆H₃₄N₃O 284.2702, found 284.2712.

(*R*)-1-Azido-2-hexadecanol: mp 45.8–46.1 °C; $[\alpha]^{25}_{\rm D}$ -3.3° (*c* 1.73, CHCl₃); IR (CHCl₃) 3621, 3421, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.24–1.48 (m, 24H), 1.70 (m, 2H), 3.22 (dd, 1H, *J* = 12.8, 7.6 Hz), 3.36 (dd, 1H, *J* = 12.8, 3.2 Hz), 3.74 (m, 1H); ¹³C NMR δ 14.10, 22.49, 25.42, 29.34, 29.49, 29.54, 29.61, 29.64, 29.66, 31.90, 34.28, 57.13, 70.85.

(S)-2-Azido-1-octanol: $[\alpha]^{25}_{D}$ +12.7° (*c* 2.05, CHCl₃; ~85% ee); IR (CHCl₃) 3616, 3427, 2125, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.23–1.42 (m, 8H), 1.49 (dt, 2H, *J* = 14.3, 7.2 Hz), 2.00 (br s, 1H), 3.43 (m, 1H), 3.52 (dd, 1H, *J* = 11.2, 7.4 Hz), 3.66 (dd, 1H, *J* = 11.2, 3.5 Hz); ¹³C NMR δ 64.46, 65.19. Anal. Calcd for C₈H₁₇ON₃: C, 56.11; H, 10.01; N, 24.54. Found: C, 55.91; H, 9.60; N, 24.35.

(S)-2-Azido-4-octadecyn-1-ol: mp 36.8–37.7 °C; $[\alpha]^{25}_{\rm D}$ +12.8° (*c* 1.71, CHCl₃); IR (CHCl₃) 3611, 3406, 2121, 2110 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.23–1.44 (m, 20H), 1.46 (m, 2H), 1.75 (br s, 1H), 2.12 (tt, 2H, *J* = 7.1, 2.3 Hz), 2.44 (dt, 2H, *J* = 6.5, 2.1 Hz), 3.61 (m, 2H), 3.76 (m, 1H); ¹³C NMR δ 14.11, 18.68, 21.41, 22.67, 28.71, 28.87, 29.12, 29.34, 29.52, 29.64, 31.90, 62.50, 64.26, 74.64, 83.69. Anal. Calcd for C₁₈H₃₃ON₃: C, 70.31; H, 10.82; N, 13.67. Found: C, 70.24; H, 10.96; N, 13.13.

(*R*)-1-Azido-4-octadecyn-2-ol: $[\alpha]^{25}_{D}$ -7.24° (*c* 1.98, CHCl₃); IR (CHCl₃) 3570, 3386, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.23-1.35 (m, 20H), 1.46 (m, 2H), 2.14 (tt, 2H, *J* = 7.1, 2.3 Hz), 2.41 (dt, 2H, *J* = 6.1, 2.3 Hz), 3.35 (dd, 1H, *J* = 12.5, 6.4 Hz), 3.41 (dd, 1H, *J* = 12.4, 4.2 Hz), 3.86 (m, 1H); ¹³C NMR δ 14.09, 18.67, 22.66, 24.92, 28.85, 28.89, 29.11, 29.33, 29.51, 29.63, 29.66, 31.90, 55.44, 69.29, 74.41, 84.12.

1-*O*-(**4**'-**Methoxybenzyl**)-**2**,**3**-*O*-**isopropylidene-6**-**azido**-**6**-**deoxy**-D-**mannofuranose:** $[\alpha]^{25}{}_{\rm D}$ +64.8° (c 2.62, CHCl₃); IR (CHCl₃) 3507, 2097, 1513, 1249, 1079 cm⁻¹; ¹H NMR δ 1.30 (s, 3H), 1.44 (s, 3H), 2.59 (br s, 1H), 3.42 (dd, 1H, J = 12.7, 6.36 Hz), 3.53 (dd, 1H, J = 12.7, 3.1 Hz), 3.78 (s, 3H), 3.93 (dd, 1H, J = 8.4, 3.8 Hz), 4.08 (m, 1H), 4.38 (d, 1H, J = 11.4 Hz), 4.55 (d, 1H, J = 11.4 Hz), 4.61 (d, 1H, J = 5.9 Hz), 4.82 (dd, 1H, J = 5.9, 3.9 Hz), 5.06 (s, 1H), 6.86 (d, 2H, J = 8.6 Hz), 7.22 (d, 2H, J = 8.6 Hz); ¹³C NMR δ 24.51, 25.84, 54.31, 155.23, 68.77, 69.49, 79.34, 79.74, 84.79, 104.99, 112.70, 113.84, 129.14, 129.74, 159.36. Anal. Calcd for C₁₇H₂₃O₆N₃: C, 55.88; H, 6.35; N, 11.50. Found: C, 56.06; H, 6.50; N, 11.68.

1-*O*-(4'-Methoxybenzyl)-2,3-*O*-isopropylidene-5-azido-**5-deoxy**-D-mannofuranose: $[\alpha]^{25}_{D} + 62.2^{\circ}$ (*c* 1.62, CHCl₃); IR (CHCl₃) 3585, 3457, 2105, 1608, 1511, 1245, 1076 cm⁻¹; ¹H NMR δ 1.26 (s, 3H), 1.43 (s, 3H), 1.98 (t, 1H, *J* = 6.1 Hz), 3.69 (m, 1H), 3.78 (s, 3H), 3.86 (m, 2H), 4.14 (dd, 1H, *J* = 8.9, 3.4 Hz), 4.42 (d, 1H, *J* = 11.3 Hz), 4.60 (d, 1H, *J* = 1.1 Hz), 4.62 (d, 1H, *J* = 4.0 Hz), 4.69 (dd, 1H, *J* = 5.8, 3.5 Hz), 5.07 (s, 1H), 6.85 (d, 2H, *J* = 8.6 Hz), 7.24 (d, 2H, *J* = 8.6 Hz); ¹³C NMR δ 24.69, 25.97, 55.27, 62.13, 63.29, 68.62, 79.52, 80.04, 85.32, 104.61, 112.77, 113.89, 129.02, 129.93, 159.41.

(S)-3-Azido-4-*O*-hexadecyl-1,4-butanediol: $[\alpha]^{25}_{D} + 27.8^{\circ}$ (c 2.21, CHCl₃); IR (CHCl₃) 3580, 2095 cm⁻¹, ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.23 (m, 26H), 1.55 (m, 2H), 1.71 (m, 2H), 2.29 (br s, 1H), 3.44 (m, 2H), 3.47 (dd, 1H, J = 10.1, 6.6 Hz), 3.54 (dd, 1H, J = 10.0, 4.1 Hz), 3.72 (m, 3H); ¹³C NMR δ 14.08, 22.66, 25.96, 29.34, 29.41, 29.56, 29.58, 29.63, 29.67, 31.90, 33.70, 59.02, 59.42, 71.67, 73.51. Anal. Calcd for $C_{16}H_{33}ON_3$: C, 67.56; H, 11.62; N, 11.82. Found: C, 67.70; H, 11.75; N, 11.79.

(*R*)-4-Azido-1-*O*-hexadecyl-1,2-propanediol: mp 33.5– 34.0 °C; $[\alpha]^{25}_{\rm D}$ -5.7° (*c* 0.84, CHCl₃); IR (CHCl₃) 3562, 2097 cm⁻¹, ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.23 (m, 26H), 1.54 (m, 2H), 1.68 (dt, 2H, *J* = 6.9, 6.8), 1.96 (br s, 1H), 3.28 (dd, 1H, *J* = 9.5, 7.5 Hz), 3.41–3.51 (m, 5H), 3.89 (m, 1H); ¹³C NMR δ 14.11, 22.68, 26.10, 29.36, 29.46, 29.60, 29.66, 29.69, 31.92, 32.29, 48.12, 67.72, 71.60, 74.61.

(*R*)-3-Azido-1-hexadecanol: mp 37.0–37.5 °C; $[\alpha]^{25}_{D}$ –23.8° (*c* 1.89, CHCl₃); IR (CHCl₃) 3610, 3460, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.20–1.24 (m, 22H), 1.50–1.70 (m, 4H), 1.76 (m, 1H), 3.47 (m, 1H), 3.76 (t, 2H, *J* = 5.5 Hz); ¹³C NMR δ 14.10, 22.67, 26.02, 28.93, 29.34, 29.40, 29.48, 29.53, 29.61, 29.63, 29.66, 31.91, 34.56, 36.81, 59.85, 60.18. Anal. Calcd for C₁₆H₃₃ON₃: C, 67.80; H, 11.73; N, 14.82. Found: C, 67.78; H, 11.79; N, 14.88.

(S)-1-Azido-3-hexadecanol: mp 42.1–43.1 °C; $[\alpha]^{25}{}_{\rm D}$ +7.5° (c 0.5, CHCl₃); IR (CHCl₃) 3600, 2100 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.20–1.45 (m, 24H), 1.56–1.65 (m, 2H), 1.72 (m, 1H), 3.45 (m, 2H), 3.72 (m, 1H); ¹³C NMR δ 14.11, 22.68, 25.53, 29.35, 29.57, 29.64, 29.65, 29.68, 31.92, 35.97, 37.75, 48.62, 69.49.

(*R*)-3-Azido-1-octadecanol: mp 43.7–44.5 °C; $[\alpha]^{25}_{D}$ –23.3° (*c* 1.59, CHCl₃); IR (CHCl₃) 3621, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.20–1.45 (m, 26H), 1.46–1.69 (m, 4H), 1.76 (m, 1H), 3.48 (m, 1H), 3.75 (t, 2H, *J* = 5.3 Hz); ¹³C NMR δ 14.10, 22.67, 26.03, 29.35, 29.40, 29.49, 29.53, 29.61, 29.64, 29.67, 31.91,34.57, 36.81, 59.83, 60.17; HRMS (FAB, MH⁺) calcd for *m*/*z* C₁₈H₃₈N₃O 312.3015, found 312.3015.

(S)-1-Azido-3-octadecanol: mp 49.3–50.3 °C; $[\alpha]^{25}{}_{\rm D}$ +7.1° (c 0.4, CHCl₃); IR (CHCl₃) 3615, 2100 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, J= 7.0 Hz), 1.20–1.47 (m, 28H), 1.50–1.71 (m, 2H), 1.74 (m, 1H), 3.44 (m, 2H), 3.71 (m, 1H); ¹³C NMR δ 14.11, 22.69, 25.53, 29.36, 29.57, 29.65, 29.69, 31.92, 35.97, 37.75, 48.62, 69.50.

(S)-3-Azido-1-octadecanol: mp 43.5–44.5 °C; $[\alpha]^{25}_{\rm D}$ +23.7° (c 1.73, CHCl₃); IR (CHCl₃) 3612, 2105 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.20–1.45 (m, 26H), 1.46–1.69 (m, 4H), 1.76 (m, 1H), 3.48 (m, 1H), 3.75 (t, 2H, J = 5.3 Hz); ¹³C NMR δ 14.11, 22.69, 26.04, 29.36, 29.41, 29.49, 29.54, 29.62, 29.65, 29.68, 31.92, 34.58, 36.82, 59.88, 60.20.

(*R*)-1-Azido-3-octadecanol: mp 49.5–50.2 °C; $[\alpha]^{25}{}_{\rm D}$ -7.2° (*c* 1.27, CHCl₃); IR (CHCl₃) 3608, 2100 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.20–1.47 (m, 28H), 1.50–1.71 (m, 2H), 1.74 (m, 1H), 3.44 (m, 2H), 3.71 (m, 1H); ¹³C NMR δ 14.10, 22.69, 25.52, 29.36, 29.58, 29.65, 29.69, 31.93, 35.97, 37.75, 48.62, 69.50.

2-Tetradecyltetrahydrofuran: IR (CHCl₃) 1460, 1050 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.23 (m, 22H), 1.41 (m, 2H), 1.54 (m, 1H), 1.79–1.95 (m, 3H), 3.68 (dd, 1H, J = 7.3, 6.5 Hz), 3.75 (m, 1H), 3.83 (dt, 1H, J = 7.4, 7.1 Hz); ¹³C NMR δ 14.11, 22.68, 25.72, 26.41, 29.36, 29.60, 29.62, 29.67, 29.76, 31.38, 31.92, 35.75, 67.58, 79.47.

(2.5,3*R*)-2-Azido-(1,3-*O*-benzylidene)hexadec-(5*E*)-ene-1,3-diol: $[\alpha]^{25}{}_{\rm D}$ +7.63° (*c* 2.7, CHCl₃); IR (CHCl₃) 2260, 1162, 735, 692 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 7.0 Hz), 1.24 (m, 20H), 2.02 (dt, 2H, *J* = 7.0, 6.8 Hz), 2.39 (dt, 1H, *J* = 14.4, 6.7 Hz), 2.55 (dt, 1H, *J* = 14.9, 4.6 Hz), 3.50 (m, 1H), 3.59 (m, 1H), 3.60 (dd, 1H, *J* = 10.4, 5.0 Hz), 4.34 (dd, 1H, *J* = 10.8, 5.0 Hz), 5.44 (s, 1H), 5.56 (m, 2H), 7.33–7.45 (m, 5H); ¹³C NMR δ 14.11, 56.35, 68.99, 80.51, 101.03, 123.93, 126.00, 128.26, 129.01, 134.66, 137.50; HRMS [FAB, MH⁺] calcd for C₂₅H₄₀N₃O₂ *m*/*z* 414.3120, found 414.3119 (40); [FAB, MH⁺ - N₂] calcd for C₂₅H₄₀NO₂ *m*/*z* 386.3059, found 386.3055 (100).

1-Azidohexadecane: IR (CHCl₃) 2105 cm⁻¹ [lit.²⁹ IR (film) 2100 cm⁻¹]; ¹H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.24 (m, 26H), 1.50 (m, 2H), 3.23 (t, 2H, J = 7.0 Hz); ¹³C NMR δ 14.11, 22.69, 25.83, 26.71, 28.84, 29.11, 29.28, 29.30, 29.45, 29.62, 29.68, 31.92, 51.49.

Hexadecyltrimethylsilyl ether: IR (CHCl₃) 1040 cm⁻¹; ¹H NMR δ 0.09 (s, 9H), 0.86 (t, 3H, J= 7.0 Hz), 1.24 (m, 26H), 1.58 (m, 2H), 3.55 (t, 2H, J= 6.8 Hz); ¹³C NMR δ -0.46, 14.11, 22.68, 25.83, 26.73, 29.15, 29.36, 29.46, 29.48, 29.54, 29.66, 19.68, 32.75, 62.76.

Acknowledgment. This work was supported by National Institutes of Health Grant HL 16660. We thank the mass spectrometry facility at Michigan State University for the HR-FAB MS. We gratefully acknowledge support from the National Science Foundation (CHE-9408535) for funds for the purchase of the 400-MHz NMR spectrometer.

Supporting Information Available: Copies of ¹H and ¹³C NMR spectra for compounds **1a** + **1b** and **2a** + **2b** in Tables 1 and 3. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9906375